Processing math: 100%
Subalgebra A1561F14
15 out of 59
Computations done by the calculator project.

Subalgebra type: A1561 (click on type for detailed printout).
Centralizer: 0
The semisimple part of the centralizer of the semisimple part of my centralizer: F14

Elements Cartan subalgebra scaled to act by two by components: A1561: (22, 42, 60, 32): 312
Dimension of subalgebra generated by predefined or computed generators: 3.
Negative simple generators: g1+g2+g3+g4
Positive simple generators: 16g4+30g3+42g2+22g1
Cartan symmetric matrix: (1/78)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (312)
Decomposition of ambient Lie algebra: V22ω1V14ω1V10ω1V2ω1
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra.
Highest vectors of representations (total 4) ; the vectors are over the primal subalgebra.g4+15/8g3+21/8g2+11/8g1g16+11/16g15+231/128g14g20+15/8g19g24
weight2ω110ω114ω122ω1
Isotypic module decomposition over primal subalgebra (total 4 isotypic components).
Isotypical components + highest weightV2ω1 → (2)V10ω1 → (10)V14ω1 → (14)V22ω1 → (22)
Module label W1W2W3W4
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Semisimple subalgebra component.
8/11g415/11g321/11g2g1
16/11h4+30/11h3+21/11h2+h1
1/11g1+1/11g2+1/11g3+1/11g4
g16+11/16g15+231/128g14
5/16g13+11/16g12+55/128g11
3/8g10+135/128g933/128g8
3/8g7+27/64g6+33/64g5
3/8g4+3/64g321/64g233/64g1
3/4h43/32h3+21/64h2+33/64h1
45/64g1+15/64g23/64g345/64g4
15/32g5+9/32g6+21/32g7
3/16g89/16g93/8g10
3/16g11+9/16g123/16g13
3/16g143/16g15+3/8g16
g20+15/8g19
g18+7/8g17
g161/8g157/4g14
9/8g131/8g123/2g11
5/4g10+3/4g911/8g8
5/4g7+5/8g6+11/4g5
5/4g4+15/8g3+3/2g211/4g1
5/2h415/4h33/2h2+11/4h1
7g12g27/2g3+35/8g4
9g5+3/2g663/8g7
15/2g83g9+75/8g10
12g1115/8g1299/8g13
12g14+9/4g15+99/4g16
39/4g17117/4g18
39/4g19+39/4g20
g24
g23
g22
g21
2g20+g19
2g18+3g17
2g16+5g156g14
7g13+5g1216g11
12g1030g921g8
12g763g6+42g5
12g475g3+168g242g1
24h4+150h3168h2+42h1
252g1528g2+330g399g4
780g5858g6+429g7
1638g8+1716g91287g10
4992g11+2925g12+3003g13
4992g1410920g156006g16
15912g17+27846g18
15912g1959670g20
75582g21
151164g22
151164g23
151164g24
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above2ω1
0
2ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
14ω1
12ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
12ω1
14ω1
22ω1
20ω1
18ω1
16ω1
14ω1
12ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
12ω1
14ω1
16ω1
18ω1
20ω1
22ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer2ω1
0
2ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
14ω1
12ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
12ω1
14ω1
22ω1
20ω1
18ω1
16ω1
14ω1
12ω1
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
12ω1
14ω1
16ω1
18ω1
20ω1
22ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M2ω1M0M2ω1M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1M14ω1M12ω1M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1M12ω1M14ω1M22ω1M20ω1M18ω1M16ω1M14ω1M12ω1M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1M12ω1M14ω1M16ω1M18ω1M20ω1M22ω1
Isotypic characterM2ω1M0M2ω1M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1M14ω1M12ω1M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1M12ω1M14ω1M22ω1M20ω1M18ω1M16ω1M14ω1M12ω1M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1M12ω1M14ω1M16ω1M18ω1M20ω1M22ω1

Semisimple subalgebra: W_{1}
Centralizer extension: 0


Made total 21930 arithmetic operations while solving the Serre relations polynomial system.